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ABSTRACT 

The  problem of o p t i m a l l y  a s s i g n i n g  t h e  modules  of a pro- 
gram o v e r  t h e  p r o c e s s o r s  o f  an  inhomogeneous d i s t r i b u t e d  pro- 
c e s s o r  sys tem is a n a l y z e d .  The o b j e c t i v e  i s  t o  a s s i g n  modules ,  
wherever  p o s s i b l e ,  t o  t h e  processors on which t h e y  e x e c u t e  most 
r a p i d l y  w h i l e  t a k i n g  i n t o  account  t h e  ove rhead  of i n t e r p r o c e s s o r  
communicat ion.  F a c t o r s  c o n t r i b u t i n g  t o  t h e  cost of an a s s i g n -  
ment are (1) t h e  amount of computa t ion  r e q u i r e d  by each  module,  

( 2 )  t h e  amount of  d a t a  t r a n s m i t t e d  between e a c h  p a i r  of modules ,  
( 3 )  t h e  speed  of e a c h  p r o c e s s o r  and ( 4 )  t h e  s p e e d  of t h e  communi- 
c a t i o n  l i n k  between each  p a i r  of p r o c e s s o r s .  

A s h o r t e s t  t ree  a l g o r i t h m  is d e s c r i b e d  t h a t  min imizes  t h e  
sum of e x e c u t i o n  and communication costs f o r  a r b i t r a r i l y  connec- 
t e d  d i s t r i b u t e d  sys t ems  w i t h  a r b i t r a r y  numbers of p r o c e s s o r s ,  

p r o v i d e d  t h e  i n t e r c o n n e c t i o n  p a t t e r n  of t h e  modules forms a tree. 
The algorithm u s e s  a dynamic programming approach  t o  s o l v e  t h e  
problem f o r  m modules  and n p r o c e s s o r s  i n  O(m 2 2  n ) t i m e .  
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1. Introduction 

Over the past few years interest in distributed 

processing has led to the identification of several challenging 

problems. One of these is the problem of: optimally assigning the 

modules of a modular program over the processors of an inhomogeneous 

distributed processor systenl. Factors contributing t o  t h e  cost 

of an assignment are (1) the amount of computation required by each 

module, 

modules, ( 3 )  the speed of each processor and ( 4 )  the speed of the 

communication link between each pair of processors. 

( 2 )  the amount of data transmitted between each pair of 

Research by Stone (77a), (78) and Bokhari (791, (80) 

has shown how the optimal assignment may be found efficiently for the 

case of dual processor systems using a network flow algorithm. 

While an extension to three processors was developed by Stone (77b), 

algorithms for four or more processors have not been found. 

Gursky (78) has shown that the problem of finding the optimal 

assignment for four or more processors is NP-complete. 

In section 2 of this paper we show that if the 

intermodule communication pattern of the program is constrained to 

be a tree, then the problem may be solved for an arbitrary number 

of processors using an efficient dynamic programming approach. 

Programs that have a tree-like structure form an important class 

and include programs written as a hierarchy of subroutines. 

Turner (80) has discussed how a tree-like structure is best suited 

for large modular programs. I 

The algorithm takes into account the interconnection 

striicture of the distributed system (i.e. the speeds of links 

between pairs of processors) a consideration that does not arise 
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in the dual processor case. 

The algorithm minimizes the sum of module execution 

and interprocessor communication costs. The two costs must be 

expressed in the same units which could be time or dollars or 

other resource units. If the costs are expressed in dollars then 

the algorithm will minimize the total financial cost of executing 

the program. If expressed in terms of module execution and 

interprocessor communication time it will minimize the total 

execution time assuming serial execution of the program. That 

is, even though there are several modules and processors, only 

one module is active on one processor at a time. This is the case 

in many distributed processing application including the distributed 

processor at Brown University (Michel & van Dam,76), (Van Dam 

et a1.,74) which has served as a model for prior research by 

Stone and Bokhari. 

In Section 3 of this paper we show how the dynamic 

programming approach may also be used to optimally schedule a number 

of tasks whose precedence relationship forms a tree over a set 

of processors whose costs of execution and intercommunication 

vary with time. The motivation in this case is to distribute 

the tasks over the processors, delaying their execution wherever 

deadlines permit so as to take advantage of periods of light 

loading of specific processors and communication links. 

In this case the algorithm may be used to minimize 

the sum of execution costs (processor and time dependent), 

communication costs (dependent on the characteristics of specific 

links and on time) and the penalties for not meeting deadlines 

(if any). 



3 

4 

2 .  Distributing Across Space 

In this section we examine the problem of 

optimally distributing a modular program over the processors of 

a distributed processing system. We call this the problem of 

distributing across space (i.e. the space of processors). 

2.1 Formulation of the problem 

Our distributed processor system is assumed to be 

made up of an arbitrary number fi of dissimilar processors. 

processors are assumed to be interconnected in an arbitary fashion, 

with arbitrary link speeds. 

These 

The program to be distributed across the processors is 

considered to be made up of a number of modules. A module is 

considered to be a portion of a program that can, in general, 

execute on any processor and could, for example, be a subroutine 

or coroutine. There are assumed to be m-modules in the distributed 

program. 

For each module we have the cost of executing it 

on each of the n-processors. The cost of executing module i on 

processor j is denoted eij and equals the sum of the costs of 

the various periods of execution of the module throughout the 

lifetime of the program (since, for example, a subroutine is 

typically executed several times during a program run). 

The eij's for an 1 module p processor problem 

from an FXE matrix. 

of executing a module varies from processor to processor, that is - 
Since the processors are dissimilar, the cost 

eij # eik, in general. 

on a subset of available processors (perhaps o:: only one processor) 

A module may be constrained to reside 

by making its execution costs on the complementary subset infinite. 
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Modules will transfer control to each other at various points 

during the lifetime of the program. 

graph in which each node represents a module and in which there 

is an edge from node i to node j if and only if module i calls 

module j during program execution, this would be a calls graph. 

The algorithm for optimal assignments that will be presented in 

this section assumes that the calls graph of the program is a 

tree. We will call this an invocation tree because it describes 

the way modules invoke other modules during the execution of the 

program. 

If we draw up a directed 

Fig. 1,shows an invocation tree made up of 8 modules. 

Should a module invoke another module that is not 

coresident with it, this invocation would have to be transmitted 

over a communication link and thus incur interprocessor 

communication cost. This is dependent on the amount of data 

transmitted from one module to the other and the cost per bit 

of transmission between the two processors on which the modules 

are resident. 

We will denote by dij the total amount of data 

transmitted between the calling module i and the called module 

j during the lifetime of the program. 

an amount of data dij between processors p and q is given by a 

function S (d.,). In its simplest form this function is 
_ W  1 3  

S (d..) = s .dij where s 

amount of data between processors p and q. 

The cost of transmitting 

is the cost of transmitting a unit 
P9 w 1 3  P9 

We assume the communication cost function to be 

symmetric, i.e. S = s This assumption permits us to 

associate the sum of all data flow between moduLes i and j 

(whether from i to j or j to i) with the direction i to j. Although 

Pq qp" 

I 

t 
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Fig. 1 An Invocation Tree 
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# sqP' we see no motivation for considering the case S 

the algorithm described below can easily be modified to handle 

this case (for which separate dij' s and dji s will be required.) 

P9 

8 

The cost of invoking a coresident module is assumed 

to be zero, i.e. S =O. Should this assumption not be valid, 

it too can be relaxed to account €or non-negligible 

intraprocessor communication costs. 

PP 

The graph corresponding to the matrix of d ' s  ij 
represents the invocation tree of a modular program. 

2 . 2 .  Minimum cost assignment across space 

We now show how the minimum cost assignment for our 

modular program may be found. Such an assignment minimizes 

the sum of execution costs and interprocessor communication 

costs. 

Given the invocation tree of a modular program, and 

the execution and interprocessor communication costs, we may 

draw up an assignment graph. Fig.2 shows the assignment 

graph for the invocation tree of Fig.1 and a 3-processor system. 

The following definitions apply to this assignment 

graph. 

1) The assignment graph is a directed graph with weighted edges. 

2) There is one distinguished node called the source node, 
denoted s. 

3 )  There are Several terminal nodes tl 
leaf node of the invocation tree. 

t2: ..., one €or each 

4 )  n In addition to the source and terminal nodes there are 
m x p further nodes in the assignment graph (for a problem 
involving 2 modules and n processors). Each node is 
labelled with a pair of numbers (i,j) and represents the 
assignment of module i to processor j. 

I 

I 

t 
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5) Each l a y e r  o f  t h e  ass ignment  g r a p h  c o r r e s p o n d s  t o  a 
node of t h e  i n v o c a t i o n  tree. For  example t h e  l a y e r  
compr i s ing  nodes  ( 2 , 1 ) ,  ( 2 , 2 )  and (2 ,3 )  c o r r e s p o n d s  t o  
node 2 of t h e  i n v o c a t i o n  tree. 

6 )  Nodes i n  l a y e r s  co r re spond ing  t o  nodes  i n  t h e  i n v o c a t i o n  
tree h a v i n g  o u t d e g r e e  g r e a t e r  t h a n  1 are c a l l e d  fo rknodes .  
Each l a y e r  o f  forknodes  i s  c a l l e d  a f o r k s e t .  

The e d g e s  have w e i g h t s  on them a c c o r i n g  t o  t h e  

f o l l o w i n g  r u l e s  

7 )  A l l  e d g e s  i n c i d e n t  on t h e  t e r m i n a l  nodes  t l ,  t2 e t c  have 
z e r o  w e i g h t  on them. 

8) Edges j o i n i n g  sourcenode S t o  nodes  (1,l) I ( 1 , 2 ) .  .. have 

1 2 ' " '  w e i g h t s  e l l ,  e 

e +S ( d .  . )  . For example,  t h e  w e i g h t  on t h e  edge j o i n i n g  
node ( 1 , 3 )  t o  (2,l) i s  e21+S13 ( d 1 2 ) .  T h i s  e q u a l s  t h e  cost  
of  ass i s r? i r?q  module 2 kn processor 1, g iven  t h a t  module 1 h a s  
been a s s i g n e d  t o  p rocesso r  3. 

9 )  The edge j o i n i n g  node ( i , p )  t o  node ( j , q )  has  w e i g h t  

jq pq 11 

I t  f o l l o w s  from p r o p e r t y  3 above t h a t  t o  e a c h  

a s s ignmen t  of t h e  m modules t o  t h e  n p r o c e s s o r s  t h e r e  c o r r e s p o n d s  

some s u b s e t  o f  nodes  of t h e  a s s ignmen t  g raph .  The subgraph  

g e n e r a t e d  by t h e s e  nodes p l u s  t h e  s o u r c e  and t e r m i n a l  nodes  

i s  c a l l e d  an  ass ignment  t ree  and h a s  t h e  f o l l o w i n g  p r o p e r t i e s .  

1) I t  i s  a tree 

2 )  I t  c o n n e c t s  t h e  sou rce  node s t o  a l l  t e r m i n a l  nodes  
tl' t 2 1 " .  

3)  I t  c o n t a i n s  one and o n l y  one node from e a c h  l a y e r  o f  
t h e  a s s i g n m e n t  graph. 

The re  i s  a one t o  one co r re spondence  between a s s ignmen t  

trees and module ass ignments .  Fu r the rmore  t h e  we igh t  o f  e a c h  

a s s ignmen t  t ree  ( i .e .  t h e  sum o f  t h e  w e i g h t s  o f  a l l  e d g e s  

i n  it) e q u a l s  t h e  cost of t h e  c o r r e s p o n d i n g  a s s ignmen t .  T h i s  

f o l l o w s  from p r o p e r t y  9 of a s s ignmen t  g r a p h s .  The t h i c k  edge  

i n  F ig .2  r e p r e s e n t  a n  ass ignment  t ree  which i s  shown i n  

i s o l a t i o n  i n  F ig .3 .  



Fig. 2 An Assignment Graph for the invocation tree of Fig. 1 and a 
3-processor System. 
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1 Fig. 3 The Assignment Tree from Fig. 2 
shown in isolation with edges 
labe 1 led. 
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TO f i n d  a minimum c o s t  a s s ignmen t  w e  need t o  f i n d  

t h e  minimum we igh t  a s s ignmen t  t ree  i n  t h e  a s s ignmen t  g r a p h .  T h i s  

may be done  u s i n g  t h e  dynamic programming approach  d e s c r i b e d  

i n  t h e  Appendix i n  0 ( m  n ) t i m e .  

3 .  D i s t r i b u t i o n  across s p a c e  and t i m e  

3.1 M o t i v a t i o n s  

2 2  

I n  t h i s  s e c t i o n  w e  d i s c u s s  how a s e t  o f  t a s k s  t h a t  

must  be e x e c u t e d  a c c o r d i n g  t o  a t r e e - l i k e  p recedence  r e l a t i o n s h i p  

may be o p t i m a l l y  schedu led  o v e r  a d i s t r i b u t e d  p r o c e s s o r  sys t em 

i n  which c o s t s  v a r y  w i t h  t i m e .  

The c o m p u t a t i o n a l  r e s o u r c e s  of many o r g a n i z a t i o n s  

a re  i n  t h e  form o f  a d i s t r i b u t e d  computer  ne twork  w i t h  e a c h  

computer s e r v i c i n g  one or  more h i g h  p r i o r i t y  loca l  t a s k s  and 

r e t a i n i n g  t h e  c a p a b i l i t y  of s e r v i c i n g  r emote ly  submi t t ed  t a s k s  

a t  a l o w  p r i o r i f i y .  I n  a p r o d u c t i o n  env i ronmen t ,  t h e  l o a d s  on 

t h e  computers  are  f a i r l y  p r e d i c t a b l e  a s  t h e y  depend h e a v i l y  on 

t h e  s p e c i f i c  loca l  loads on t h e  machines .  

I n  such  an  envi ronment  w e  would be i n t e r e s t e d  i n  

d i s t r i b u t i n g  a l a r g e  set  o f  t a s k s  o v e r  t h e  sys t em s u c h  t h a t  it 

u t i l i z e s  wha teve r  processors are  l i p h t l y  l o a d e d .  

loads on t h e  processors are t i m e  dependen t ,  w e  may wish  t o  

c o n s i d e r  suspend ing  some t a s k s  u n t i l  a t i m e  when t h e  load on a 

p a r t i c u l a r  processor i s  v e r y  l i g h t .  O f  c o u r s e ,  some t a s k s  may 

Since t h e  

be t i m e  c r i t i c a l  and n o t  admi t  any s u c h  s u s p e n s i o n .  Our 

problem t h u s  becomes one  of d i s t r i b u t i n g  a set  of t a s k s  over a 

set  of processors, t a k i n g  i n t o  a c c o u n t  t h e  r u n  cost of e a c h  

t a s k  on e a c h  processor (which w i l l ,  i n  g e n e r a l ,  be t ime-dependen t ) ,  

t h e  in te rcommunica t ion  costs between p a i r s  o f  t a s k s  (which 
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will depend on the pairs of processors on which the two tasks are 

executed and may also be time dependent) and the penalties for 

not meeting deadlines for  t a k s  (which may be set  t o  infinity if a 

task must be executed by a certain time). 

As a concrete example of a situation where such 

scheduling may be useful, consider the setting up of an appointment 

€or a student to see a specific doctor at a Univ'ersity Infirmary. 

This task is to be run at the University's central administrative 

computing center (which is made up of one or more time-shared 

machines). The task involves the updating of a specific doctor's 

appointment file, the scheduling of an examination room, mailing 

I a reminder to t h o  ~ L , : J A P ~ ~ ;  : i ? d a + j z ~  t h e  studer?t's acccunt f i l e  etc. 

Some tasks (e.9. updating the doctor's appointment file) must be 

done immediately, n-h i l e  others (updating the student's account) 

may be deferred until a later time. 

In an airlines reservation computer system, the prime 

objective is to provide fast reliable service to the numerous 

ticketing terminals. However there is no reason why such a 

system cannot be used for other functions as well. Tasks other 

than ticketing need to be scheduled over this system so as to 

minimally impact the efficiency of ticketing by deferring as 

much as possible such t a s k s  t o  o f f  peak load hours. 

Another example is where a long engineering computation 

(comprising several steps to be executed in a sequence) is to be 

carried out at a large computation laboratory with several 

computers, some of which are used for real time simulation 

during the day. An engineer carrying out such a calculation 

will often do the initial data preparation during the day and 
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t h e n  suspend h i s  t a s k  u n t i l  n i g h t  t i m e  when it may be  r u n  a t  

v e r y  l o w  cos t  on a l i g h t l y  l o a d e d  machine.  The f i n a l  i n t e r a c t i v e  

examina t ion  o f  t h e  r e s u l t s  i s  done  on t h e  f o l l o w i n g  day .  

The complex o f  compute r s  a t  NASA Langley Resea rch  

C e n t e r  i s  a n  example of t h i s  k i n d  of env i ronmen t .  The re  are  a t  

t h i s  c e n t e r  several  CDC Cyber machines  w i t h  v a r y i n g  c o m p u t a t i o n a l  

power b u t  c a p a b l e  o f  e x e c u t i n g  e s s e n t i a l l y  t h e  s a m e  i n s t r u c t i o n  

set. Some p o w e r f u l  machines are c o m p l e t e l y  d e d i c a t e d  t o  rea l  t i m e  

s i m u l a t i o n  d u r i n g  t h e  day b u t  may be used a t  lower c o s t  d u r i n g  

t h e  e v e n i n g s  and a t  n i g h t .  

3.2 Formula t ion  of t h e  problem. 

We assume t h e r e  t o  be 2 p r o c e s s o r s  i n  o u r  d i s t r i b u t e d  

system. The costs  o f  e x e c u t i n g  t a s k s  on p r o c e s s o r s  v a r y  w i t h  

t i m e  b u t  remain c o n s t a n t  o v e r  s p e c i f i e d  p e r i o d s  o f  t i m e  c a l l e d  

p h a s e s .  T h i s  is i l l u s t r a t e d  i n  F i g . 4  where t h e  v e r t i c a l  a x i s  

r e p r e s e n t s  t h e  s p a c e  of p r o c e s s o r  and t h e  h o r i z o n t a l  a x i s  

r e p r e s e n t s  t i m e .  During some p h a s e s  a p r o c e s s o r  may be t o t a l l y  

u n a v a i l a b l e  because  o f  complete  d e d i c a t i o n  t o  a real-time t a s k  

or pe rhaps  because  o f  s c h e d u l e d  ma in tenance .  

Once a t a s k  s t a r t s  e x e c u t i n g  d u r i n g  a p a r t i c u l a r  p h a s e ,  

it i s  a l l o w e d  t o  r u n  t o  comple t ion  even  i f  t h e  p h a s e  e n d s  d u r i n g  

t a s k  e x e c u t i o n .  T h e  t i m e  t o  e x e c u t e  a t a s k  i s  c o n s i d e r e d  t o  be 

s m a l l  compared t o  t h e  l e n g t h  o f  a phase .  A t a s k  t h a t  i s  

i n i t i a t e d  n e a r  t h e  end of a p h a s e  i s  t r e a t e d  l i k e  a customer 

who arrives a t  a bank j u s t  b e f o r e  c l o s i n g  time--he i s  a l l o w e d  

t o  complete  h i s  t r a n s a c t i o n  even  though  c l o s i n g  t i m e  i s  p a s t .  

I 

C’ 

The g r a p h  superimposed on F ig .4  shows one possible 

way of s c h e d u l i n g  a p recedence  tree of t a s k s  o v e r  t h e  t w o  
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Fig. 5 A precedence tree and its scheduling graph 
for a two processor two phase problem. 
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d imens ions  o f  s p a c e  ( p r o c e s s o r s )  and t i m e  ( P h a s e s ) .  

I n  t h e  u s u a l  f a s h i o n ,  e a c h  node of t h e  p r e c e d e n c e  

tree r e p r e s e n t s  a t a s k  and a directed edge from node i t o  node j 

i m p l i e s  t h a t  t a s k  i m u s t  be comple ted  b e f o r e  t a s k  j i s  s t a r t e d .  

With e a c h  node i is a s s o c i a t e d  ei jk,  t h e  cos t  of *-- 

e x e c u t i n g  t a s k  i on p r o c e s s o r  j d u r i n g  phase  k .  T h i s  cost  w i l l ,  

i n  g e n e r a l  v a r y  a c r o s s  t h e  processors and phases .  I t  may be set 

t o  i n f i n i t y  f o r  some p r o c e s s o r s  d u r i n g  c e r t a i n  p h a s e s  i f  t h e s e  

p r o c e s s o r s  a r e  n o t  a v a i l a b l e  d u r i n g  t h e s e  s p e c i f i c  p h a s e s .  

A l s o  a s s o c i a t e d  wi th  e a c h  node i i s  Eik t h e  p e n a l t y  

T h i s  p e n a l t y  Fik 
I 

€or n o t  c o m p l e t i n g  t a s k  i by t h e  end of phase  k.  

may be se t  t o  i n f i n i t y  i f  t h e  t a s k  must f i n i s h  by phase  k .  

With t h e  edge connec t ing  nodes i & j i n  t h e  p r e c e d e n c e  

tree,  w e  have d i j  - t h e  amount o f  d a t a  t h a t  m u s t  be t r a n s m i t t e d  

between t a s k s  when invok ing  t a s k  j a t  t h e  end o f  t a s k  i .  The 

overhead  of i n v o k i n g  t a s k  j i n  phase  6 on p r o c e s s o r  p a f t e r  

comple t ing  t a s k  i i n  phase  6 on p r o c e s s o r  p i s  a f u n c t i o n  

T ( d i j ,  px,  p ,dv,  dw) .  

amount o f  d a t a  t r a n s m i t t e d  (ii) t h e  c o s t  p e r  b i t  o f  t h e  l i n k  between 

p, and  py and ( i i i l t h e  overhead of suspending  a t a s k  when i t  

f i n i s h e s  i n  4, and resumes i n  4,. 

i s  t h e  cost  of i g n o r e s  (iii) above is  T=S 

t r a n s m i t t i n g  a u n i t  of d a t a  between p r o c e s s o r s  p and p . 

W Y 

V X 

This  f u n c t i o n  can  t a k e  i n t o  a c c o u n t  (i) t h e  
Y 

A s imple  f u n c t i o n ,  which 

a d i j  where XY XY 

X Y 

3 . 3 .  s o l u t i o n  

The p recedence  tree of t a s k s  may be  s c h e d u l e d  t o  minimize  

t h e  sum of e x e c u t i o n  costs,  i n t e r p r o c e s s o r  communicat ion cos ts ,  

p e n a l t i e s  f o r  n o t  mee t ing  d e a d l i n e s  and costs of s u s p e n d i n g  and 

resuming t a s k s .  The s o l u t i o n  t e c h n i q u e s  a r e  v e r y  s i m i l a r  t o  t h e  
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op t ima l  a s s ignmen t  approach  of s e c t i o n  2 .  

F i g .  5 .  shows a s c h e d u l i n g  g raph  t h a t  h a s  m.n.6 nodes  f o r  a 

problem based  on m modules ,  n p r o c e s s o r s  and 6 p h a s e s .  T h i s  

is a weighted  d i r e c t e d  g raph  ( F i g . 5  o m i t s  t h e  arrow heads  on 

t h e  edges f o r  c l a r i t y  - t h e r e  i s  no ambigu i ty  o f  d i r e c t i o n  

s i n c e  a l l  edges  c o n s i s t e n t l y  p o i n t  away from node s . )  T h i s  

g raph  i s  drawn up a c c o r d i n g  t o  t h e  f o l l o w i n g  r u l e s .  

Node ( i , j , k )  r e p r e s e n t s  t h e  e x e c u t i o n  o f  t a s k  i on p r o c e s s o r  
j d u r i n g  phase  k. 

Edges j o i n i n g  node s t o  nodes  1 1 1 , 1 2 1 ,  1 1 2  e t c .  have w e i g h t s  
e 

Edges i n c i d e n t  on nodes t l ,  t 2 . .  have w e i g h t  z e r o .  

There i s  an  edge  j o i n i n g  node ( i , p x  @J t o  node ( j  

node i p r e c e d e s  node j i n  t h e  p recedence  t ree  and i f  Idw)/dv 

e e t c .  1 1 1 , e 1 2 1 ,  1 1 2  

i f  ‘ P y ,  @w) 

The w e i g h t  on t h e  edge d e s c r i b e d  above i s  

t a k e s  i n t o  a c c o u n t  t h e  c o s t  of e x e c u t i o n ,  t h e  second term 
i s  t h e , i n t e r p r o c e s s o r  and i n t e r p h a s e  communication 
overhead.  The l a s t  t e r m  r e p r e s e n t - s  t h e  p e n a l t y  f o r  n o t  
comple t ing  t h i s  t a s k  by t h e  end o f  t h e  p r e v i o u s  p h a s e .  

The s i m i l a r i t y  between t h i s  s c h e d u l i n g  g r a p h  and  

t h e  ass ignment  g raph  o f  t h e  p r e v i o u s  s e c t i o n  i s  obv ious .  I n  

f a c t  t h e  s c h e d u l i n g  g raph  may be c o n s i d e r e d  t o  be a n  a s s i g n m e n t  

graph  based  on m modules and n .6  p r o c e s s o r s .  Thus t h e  s h o r t e s t  

t ree i n  t h e  s c h e d u l i n g  g raph ,  which would co r re spond  t o  t h e  

op t ima l  s c h e d u l e ,  may be found u s i n g  t h e  a l g o r i t h m  d e s c r i b e d  

i n  t h e  append ix  i n  O ( m  n 6 ) t i m e .  2 2 2  
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4 .  C o n c l u s i o n s  . 
A dynamic programming a l g o r i t h m  h a s  been p r e s e n t e d  

t h a t  may be used  (1) t o  o p t i m a l l y  a s s i g n  a modular  programme 

t h a t  h a s  a t r e e - l i k e  s t r u c t u r e  o v e r  a d i s t r i b u t e d  p r o c e s s o r  

sys t em and  ( 2 )  t o  o p t i m a l l y  s c h e d u l e  a set  of t a s k s  t h a t  have 

a t r e e - l i k e  p r e c e d e n c e  r e l a t i o n s h i p  o v e r  a d i s t r i b u t e d  

p r o c e s s o r  sys tem i n  which costs v a r y  w i t h  time b u t  are c o n s t a n t  

over c o n t i g u o u s  p e r i o d s  c a l l e d  p h a s e s .  

2 2  For t h e  f i r s t  c a s e  t h e  a l g o r i t h m  h a s  O ( m  n ) t i m e  

complex i ty  where m i s  the  number o f  modules  and n t h e  number of 

p r o c e s s o r s .  We have thus  shown t h e  unso lved  problem o f  o p t i m a l l y  

a s s i g n i n g  a modular  prUyLaLI1 vv;c ;;=re tk: th ree  L - -  v->-n?===f i~e  +n hc 

s o l v a b l e  f o r  t h e  impor t an t  c l a s s  o f  programs i n  which t h e  

module i n t e r c o n n e c t i o n  s t r u c t u r e  i s  a t ree .  

2 2 2  I n  t h e  second case t h e  a l g o r i t h m  h a s  O(m n j3 1 

complex i ty  where j3 is  the number of p h a s e s .  

5. Acknowledgements 

The a u t h o r  wishes t o  t h a n k  P r o f e s s o r  Harold S t o n e  f o r  

h i s  u n c e a s i n g  encouragement of t h i s  r e s e a r c h .  Comments of 

t h e  r e f e r e e s  on a n  e a r l i e r  v e r s i o n  of t h i s  p a p e r  have 

s i g n i f i c a n t l y  he lped  t o  r e shape  it. 

J 



13 

6. References - 
Bokhari (79) S. H. Bokhari, "Dual Processor Scheduling with Dynamic 

Reassignment,'' IEEE Trans. Software Eng., vol. SE-5, no.4, 
pp. 341-349, July 1979. 

Bokhari (EO) S. H. Bokhari, "Optimal Assignments in Dual Processor 
Distributed Systems under varying load conditions," 
IEEE Trans. Software Eng., to appear. 

Gursky (78) M. Gursky, private communication. 

Michel & van Dam (76) J. Michel and A.  van Dam, "Experience with 
distributed processing on a Host/Satellite Graphics 
System," Proceedings of SIGGRAPH '76, available as 
Computer Graphics, (SIGGRAPH newsletter), vol. 10, no. 2, 
1976. 

Stone (77a) H. S. Stone, "Multiprocessor Scheduling with the aid 
of Network Flow Algorithms," IEEE Trans. Software Eng., 
vol. SE-3, no. 1, pp. 85-93, Jan 1977. 

Stone (77b) H. S.  Stone, "Program Assignment iri Three-Processor 
Systems' and Tricutset Partitioning of Graphs, " Tech. 
Rep. no. ECE-CS-77-7, Dept. Elec & Computer Eng., 
Univ. of Massachusetts, Amherst. 

Stone (78) H .  S. Stone, "Critical Load Factors in Distributed 
Systems," IEEE Trans Software Eng., vol. SE-4, no. 3 ,  
pp. 254-258, May 1978. 

- CACM, vol. 2 3 ,  no. 5, pp. 272-277, May 1980. 
Turner (30) J. Turner , "The Structure of Modular Programs, 'I 

van Dam et al. A. van Dam, G. Stabler& ii Harrington, "Intelligent 
Satellites f;or interactive graphics," Proc. of the - IEEE, Lol. 62, no. 4 ,  pp. 83-92, April 1974. 



1 4  

6. Appendix: The s h o r t e s t  t ree  a l g o r i t h m  

An a l g o r i t h m  t o  f i n d  t h e  s h o r t e s t  a s s ignmen t  tree 

i n  an ass ignmen t  g raph  i s  p r e s e n t e d  i n  t h i s  s e c t i o n .  A t  t h e  

h e a r t  of t h e  a l g o r i t h m  i s  a p rocedure  t h a t  w i l l  f i n d  t h e  

s h o r t e s t  p a t h s  trom a t e r m i n a l  node o f  t h e  a s s ignmen t  g r a p h  t o  

a l l  nodes i n  t h e  n e a r e s t  f o r k s e t  ( F i g . 6 ) .  T h i s  may be done 

u s i n g  dyliamic programming i n  O(mn ) t i m e  (From e a c h  node i n  a 

l a y e r  w e  l abe l  a l l  nodes i n  t h e  p r e c e e d i n g  l a y e r - - t h i s  t a k e s  

O(n ) t i m e .  T h i s  l a b e l l i n g  i s  r e p e a t e d  O ( m )  t i m e s ) .  L e t  u s  

c a l l  t h i s  p r o c e d u r e  SHORT and assume t h a t  it leaves p o i n t e r s  

from e a c h  node t o  t h e  next  node i n  t h e  s h o r t e s t  p a t h  t o  t h e  

t e r m i n a l  z s d e .  

2 

2 

W e  w i l l  c a l l  a f o r k s e t  "exposed"  when t h e  s h o r t e s t  

p a t h  from i t s  nodes  t o  a l l  p o s s i b l e  t e r m i n a l  nodes  have been found 

J 



F i g  6 Shortest paths from tl and t2 t o  a l l  * 
nodes i n  t h e  forkset.  



b e g i n  

1 5  

i n p u t  g r a p h  ; 

( *  TSET is  t h e  set  o f  a l l  t e r m i n a l  nodes  * )  
( *  FSET is t h e  set o f  a l l  f o r k s e t s  * )  

w h i l e  ITSET\ > 1 d o  

b e g i n  

t o  e a c h  t e r m i n a l  node t i n  TSET a p p l y  p r o c e d u r e  
SHORT and remove t from TSET; 

f o r  e a c h  exposed  forkset f i n  FSET do 

b e g i n  

t e m p o r a r i l y  d i s c o n n e c t  a l l  o u t g o i n g  e d g e s ;  

f; create a pseudo- te rmina l  node t 

j o i n  a l l  nodes i n  f t o  tf w i t h  e d g e s  t h a t  
Weinhtc nnirzl  to the qiim of the  

s e v e r a l  s h o r t e g t  p a t h s  to the  s e v e r a l  
d i s c a r d e d  t e r m i n a l  nodes:  

- >-.-- 

remove f from FSET; 

add  tf t o  TSET; 

end ; 
end : 

f i n d  t h e  s h o r t e s t  p a t h  from t h e  l a s t  t e r m i n a l  node t o  s; 
( *  t h e  l e n g t h  o f  t h i s  p a t h  e q u a l s  t h e  w e i g h t  o f  t h e  s h o r t e s t  tree * )  

r e c o n n e c t  a l l  d i s c o n n e c t e d  edges:  

traverse g r a p h  from s t o  a l l  t e r m i n a l  nodes  by f o l l o w i n g  
p o i n t e r s  set  up by procedure  short;  ( *  e a c h  node encoun te red  
is p a r t  o f  t h e  s h o r t e s t  tree * )  

end.  



16 

Fig .6  shows an ass ignment  g r a p h  j u s t  a f t e r  t h e  a p p l i c a t i o n  of 

p rocedure  SHOiiT t o  t e r m i n a l  nodes  tl and  t2. 

have t e m p o r a r i l y  removed t h e  t w o  l i m b s  o f  t h e  g r a p h  and  

c r e a t e d  a pseudo- te rmina l  node to 

j o i n i n g  to t o  a node i n  t h e  f o r k s e t  e q u a l s  t h e  sum of t h e  

s h o r t e s t  p a t h s  from t h a t  node t o  tl and t2 from F i g . 6 .  

f i n d i n g  t h e  s h o r t e s t  p a t h  from s t o  to w e  r e c o n n e c t  t h e  t w o  

limbs of t h e  g raph  t o  o b t a i n  t h e  s h o r t e s t  tree a s  shown i n  F i g . 8 .  

I n  F ig .7  w e  

The w e i g h t  on t h e  edge  

A f t e r  

T h i s  a l g o r i t h m  i s  a p p l i c a b l e  t o  a b i t r a r y  a s s i g n m e n t  

g raphs .  Each a p p l i c a t i o n  o f  p rocedure  SHORT t a k e s  O(mn 2 ) 

t i m e .  The t o t a l  number of t i m e s  t h i s  p r o c e d u r e  i s  a p p l i e d  

c a n n o t  exceed  m, t h e  number o f  l a y e r s  i n  t h e  graph .  The o v e r a l l  

complex i ty  o f  t h e  a l g o r i t h m  i s  t h u s  O ( m  2 2  n 1 .  
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z F i g .  7 Transformed graph with  shor tes t  path 
from pseudo terminal node to to s. 
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Fig. 8 The shortest assignment tree. 
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